
Approximation algorithms for counting the number of

perfect matchings in bipartite graphs∗

Abbas Mehrabian†

University of Waterloo

April 15, 2010

1 Introduction

The problem of devising an algorithm for counting the number of perfect matchings in

bipartite graphs has a long history. Apparently the first algorithm (which works only in

planar graphs) was presented in 1961 [8]. Then Valiant in 1979 showed that the problem is

#P-complete, meaning that no polynomial-time algorithm exists for the problem, unless

P = NP [11]. After that, people focused on developing fast approximation algorithms

for the problem. However, even developing a polynomial-time approximation algorithm

appeared to be very difficult, as the first fully polynomial-time approximation scheme

(see Section 3 for definition) for the problem was given in 2001 [6], and it uses a rather

complicated Markov chain. In Table 1, I have collected some of the important results.

For each result, the class of graphs in which the algorithm works and the running time

are mentioned. Some notations need to be defined to read the table properly: the graph

in question is a bipartite graph with two parts of size n, we say the graph is γ-dense if the

degree of each vertex is at least γn, and the O∗ notation hides the log n and ε−1 (where ε

is the maximum acceptable error of the algorithm) factors.

In this report I will present the algorithm of Jerrum and Sinclair for 1
2
-dense graphs,

and then provide a summary of the exponential algorithm of Jerrum and U. Vazirani.

Section 2 is an introduction to Markov chains for those who have no previous background.

If you have a basic knowledge about Markov chains you can skip Section 2. In Section 3 the

terminology is introduced. In Section 4, which is the longest section, the first algorithm

∗This is a report for the course CO 754: Approximation Algorithms, Winter 2010, University of

Waterloo.
†amehrabi@uwaterloo.ca

1

author class of graphs running time year reference

Kasteleyn planar graphs O(n3) 1961 [8]

Ryser all graphs 2O(n) 1963 [9]

Jerrum, Sinclair 1
2
-dense graphs O∗(n9) 1989 [5]

Jerrum, U. Vazirani all graphs 2O(
√
n) 1996 [7]

Jerrum, Sinclair, Vigoda all graphs O∗(n10) 2001 [6]

Bezáková,Štefankovič,V.Vazirani,Vigoda all graphs O∗(n7) 2006 [1]

Huber d-regular graphs O∗(n1.5+.5/d) 2006 [3]

Huber, Law γ-dense graphs O(n1.5+1/(4γ−2)) 2008 [4]

Table 1: Summary of the important results

is presented with some detail, and an outline of the second algorithm can be found in

Section 5. Finally, in Section 6, an application of the problem is discussed.

2 Markov Chains

Let H = (V,E) be a directed graph with no multiple edges but loops are allowed. For

a vertex v ∈ V , let N+(v) denote the set of outneighbors of v (u is an outneighbor of

v if vu ∈ E). Also let p : E → (0, 1] be some function satisfying
∑

u∈N+(v) p(v, u) = 1.

A random walk on H is the following process, which occurs in a sequence of discrete

steps : starting at vertex v0, we proceed at the first step to an outneighbor u of v0 with

probability p(v0, u). Suppose we go to v1 in first step. At the second step, we proceed to

a randomly chosen outneighbor of v1 (using the distribution induced by function p) and

so on. The choice at each step is independent of all previous choices.

Markov chains is just the formalization of this concept. A Markov chain consists of a

set of states S (corresponding to the set of vertices in the random walk) and a transition

matrix P that has one row and one column for each state, and its (i, j)-th element, Pi,j, is

the probability that the next state will be j, given that the current state is i (corresponds

to the function p). Thus the entries of P are in [0, 1] since they are probabilities, and for

all i,
∑

j Pi,j = 1. In the following we will always be working with Markov chains with

finite state space S, and p(i, j) is just another notation for Pi,j. An important property

of a Markov chain is the memorylessness property: the future behavior of the Markov

chain depends only on its current state, and not on how it arrived at the present state.

I will denote by Xt the state of the Markov chain at time t (corresponding to the vertex

we are at, after step t). If we start at state i, the probability that we are at state j in

time t is denoted by pt(i, j). That is, pt(i, j) = Pr[Xt = j|X0 = i]. From any Markov

2

chain MC we can build a directed graph H with vertex set V (H) = S and a function

p : E(H) → (0, 1] such that MC corresponds to a random walk on H. This graph is

called the underlying graph of MC.
Let us define the distribution of the chain at time t to be the row vector qt =

(qt1, q
t
2, . . . , q

t
n), where qti is the probability that the chain is at state i in time t. Note

that qt depends on the initial distribution q0. It is not hard to check that qt+1 = qtP . A

stationary distribution for MC is a probability distribution π such that π = πP . Intu-

itively, if the Markov chain is in the stationary distribution at time t, then it remains in

the stationary distribution at time t+ 1 (and in future as well).

A Markov chain is said to be ergodic if for any pair u, v ∈ V (H), there is a number t0

such that for all t > t0 we have pt(u, v) > 0. Ergodicity is an important property because

of the following result (a proof may be found in most texts on stochastic processes):

Theorem 2.1.[Fundamental Theorem of Markov Chains] Any finite and ergodic Markov

chain has a unique stationary distribution π and for any initial distribution π0 we have

lim
t→∞

π0P
t = π,

where the convergence is pointwise.

There are two cases in which ergodicity of a finite Markov chainMC would fail, and it

is evident why in those cases convergence does not happen in general. First, it may be the

case that the underlying graph H of MC is not strongly conneceted. That is, there are

two vertices u, v ∈ V (H) such that there is no directed path from u to v. In this case, it

clearly differs if we start from u or v, because if we start from u, we will never reach v (for

all t ≥ 0 we have pt(u, v) = 0) but if we start from some other vertex, it may be possible

that we reach v in future. Hence the theorem cannot be true in general for every initial

distribution. In this case, we say that our chain is reducible. If the underlying graph is

strongly connected we say that our chain is irreducible. Second, it may be the case that

there are two vertices u, v and some positive integer T such that pt(u, v) is positive only

for t’s that are divisble by T . For example, if the underlying graph is bipartite, then for

any two vertices u, v in the same part, pt(u, v) is zero for all odd t’s. Hence the limit will

not exist in general, since if we start from u, then
(
π0P

2k
)
v

= Pr[X2k = v|X0 = u] is

positive (and not tending to zero) while
(
π0P

2k+1
)
v

= Pr[X2k+1 = v|X0 = u] is zero. If

this second bad case does not happen then we say that our chain is aperiodic.

Although the above theorem is very interesting theoretically, it would not be practical

if we do not know the stationary distribution. Let us say that a Markov chain is symmetric

if for any two states i, j we have p(i, j) = p(j, i). Fortunately, if the chain is symmetric

(which is the case in most applications) then its stationary distribution is uniform. Let

3

πU denote the uniform distribution. That is, (πU)i = 1/s for all states i, where s is the

number of states. Then for each state j we have:

(πUP)j =
s∑
i=1

(πU)iPj,i =
s∑
i=1

Pi,j/s = 1/s = (πU)j

3 Terminology

In this report, by graph I always mean a bipartite graph whose parts have equal size.

Usually n denotes the size of each part. In the following I will assume that the graph in

question has at least one perfect matching (this is easy to check in polynomial time). Let

us say that G is γ-dense if the degree of every vertex is at least γn. And if G is 1/2-dense

I just say G is dense. Let us denote by Mk = Mk(G) the set of k-matchings (matchings

k edges), and let mk = mk(G) = |Mk(G)|. So m1(G) = |E(G)| and the objective is to

approximate mn(G). The set of all polynomially bounded functions in variables x1, . . . , xk

is denoted by poly(x1, . . . , xk).

Definition 1. For nonnegative real numbers a, â and ε ∈ [0, 1], I say that â approximates

a within ratio 1 + ε if

a/(1 + ε) ≤ â ≤ a× (1 + ε).

Remark 1. The following are easily derived from the definition:

1. If â approximates a within ratio 1 + ε then â−1 approximates a−1 within the same

ratio.

2. For any nonnegative real number N , if â approximates a within ratio 1 + ε then

â/N approximates a/N within the same ratio.

3. If â approximates a within ratio 1 + ε and b̂ approximates b within ratio 1 + ε′ then

âb̂ approximates ab within ratio (1 + ε)(1 + ε′).

4. Let ai, âi, bi, b̂i, Ni be nonnegative real numbers for i = 1, 2, . . . , n, such that for all i,

âi/Ni and b̂i/Ni approximate ai/Ni and bi/Ni within ratio 1 + ε, respectively. Then
n∏
i=1

(âi/b̂i) approximates
n∏
i=1

(ai/bi) within ratio (1 + ε)2n.

5. If a3 approximates a2 within ratio 1 + ε2 and a2 approximates a1 within ratio 1 + ε1

then a3 approximates a1 within ratio (1 + ε1)(1 + ε2).

4

Definition 2. A fully polynomial-time randomized approximation scheme (fpras) for the

problem is a randomized algorithm that given graph G and a parameter ε ∈ (0, 1] produces

in time poly(n, 1/ε) a number m̂n(G) such that

Pr [m̂n(G) approximates mn(G) within ratio (1 + ε)] ≥ 3/4.

Remark 2. It is easy to verify that given δ, by applying this algorithm O(log δ−1) times

and taking the median of the answers, we can increase this probability to 1− δ.

4 The Algorithm For Dense Graphs

In this section I will present a fully polynomial-time randomized approximation scheme

for dense graphs, which is based on Markov chains. The framework was proposed by

Broder in 1986 [2] but the theorem proving the polynomial bound on the running time

(Theorem 4.2) was proved by Jerrum and Sinclair in 1988 [5]. The monograph by Sinclair

[10] contains more details and some further applications.

The idea is to approximate mn via the product mn = mn

mn−1
× mn−1

mn−2
×· · ·× m2

m1
×m1. We

approximate each mk/mk−1 using the idea of sampling. Suppose that we have a procedure

to sample uniformly from the set Mk ∪Mk−1. If we take a set of samples, say R, from

this set, then the ratio of the k-matchings of R to the ratio of (k − 1)-matchings of R is

an approximation for mk/mk−1. In the first subsection, I will make this idea precise and

reduce the problem to near-uniform sampling from the set Mn ∪Mn−1. In the second

subsection, I will show how the sampling is done using a Markov chain.

4.1 Sampling means approximate counting

Definition 3. Let S be a finite set. Let us say that algorithm A is a near-uniform

sampler with tolerance ε ∈ [0, 1] for S if, in each run, A returns an element x of S such

that for all U ⊆ S,
|Pr[x ∈ U]− |U |/|S||

|U |/|S|
≤ ε.

Lemma 4.1. Let S be a finite set and U ⊆ S. Write p = |U |/|S|. Suppose that there

exists a near-uniform sampler A for U with tolerance ε ∈ [0, 1]. A natural method to

approximate p is to run A N times and let X be proportion of the sample that belong to

U . Then for any δ ∈ (0, 1], if N ≥ (27/pε2) ln(2/δ) then X approximates p within ratio

1 + 5ε with probability at least 1− δ.

Proof. For each sample x we have |Pr[x∈U]−p|
p

≤ ε. Hence

p(1 + 3ε)−1 ≤ p(1− ε) ≤ Pr[x ∈ U] ≤ p(1 + ε) ≤ p(1 + 3ε),

5

and therefore E[X] approximates p within ratio 1 + 3ε. If X approximates E[X] within

ratio 1 + ε/2 then X approximates p within ratio (1 + ε/2)(1 + 3ε) ≤ 1 + 5ε, so

Pr[X approximates p within ratio 1 + 5ε]

≥ Pr[X approximates E[X] within ratio 1 + ε/2]

≥ Pr[|X − E[X]| ≤ pε/3]

≥ 1− 2 exp(−ε2pN/27),

where the last inequality follows from Chernoff’s bounds. This last quantity is greater

than 1− δ if N ≥ (27/pε2) ln(2/δ). �

Note that the number of samples depend on the parameter p. In our problem, this

quantity is related to the ratio of k-matchings to (k−1)-matchings. The following lemma

gives a bound on this.

Lemma 4.2. For all 2 ≤ k ≤ n we have

1/n2 ≤ mk

mk−1

≤ n2.

Proof. Any k-matching can be built by inserting an edge to some (k−1)-matching. Each

(k−1)-matching has (n−k+1) unmatched vertices in each part, thus at most (n−k+1)2

edges can be inserted to build a k-matching. Therefore, the number of k-matchings is at

most (n− k+ 1)2 times the number of (k− 1)-matchings, which proves the upper bound.

An augmenting path in a matching, is an odd path whose edges are alternately match-

ing and non-matching, and its first and last edges are non-matching. For the lower bound,

I first prove that every (k − 1)-matching M has an augmenting path of length at most

3. Let V, V ′ be the bipartation of G, and v ∈ V, v′ ∈ V ′ be unmatched in M. Let us

denote by N(u) the set of neighbors of a vertex u. If N(v) has an unmatched vertex,

then we find an augmenting path of length 1. Suppose this case does not happen. The

set N(v) has at least n/2 vertices, and all of them are matched with some vertex in V .

Since |N(v′)| ≥ n/2, we can find an edge ab of matching, with a ∈ N(v), b ∈ N(v′). Thus

(v, a, b, v′) is an augmenting path of length 3 (see Figure 1).

Consider a path P of odd length in a matching M whose edges are alternately

matching and non-matching, and whose first and last edges are matching edges. By

de-augmenting P I mean building a new matching M′ = M∆P , where ∆ refers to the

symmetric difference operation (see Figure 2). Now, from any k-matching we can build

at most k + 2
(
k
2

)
= k2 number of (k − 1)-matchings by de-augmenting paths of length

at most 3, and (by above discussion) we build all (k − 1)-matchings in this way, hence

mk−1 ≤ k2mk ≤ n2mk. �

We are in a good shape to state the main lemma of this subsection, which reduces the

problem to near-uniform sampling from the set Mn(G) ∪Mn−1(G).

6

v

VV ′

v

a b

v′

Figure 1: An augmenting path of length 3

Figure 2: De-augmenting a path of length 3

Lemma 4.3. Suppose that for any dense G and tolerance τ ∈ (0, 1], there exists a

near-uniform sampler A(G, τ) for Mn(G) ∪Mn−1(G), with tolerance τ and running time

poly(n, log τ−1). Then there is an fpras for counting the number of perfect matchings in

a dense graph.

Proof. Let G, ε be given. First, suppose that for each 2 ≤ k ≤ n, we can approximate

rk = mk/mk−1 within ratio (1 + ε/4n)2 with probability (1− 1/8n)2 in time poly(n, 1/ε).

Let r̂k be the estimate for rk. Then we can compute the product m1r̂2r̂3 . . . r̂n in time

poly(n, 1/ε), which approximates mn within ratio (1 + ε/4n)2n ≤ 1 + ε with probability

at least (1− 1/8n)2n ≥ 3/4, and this completes the proof.

Next, I describe how to approximate rk with the desired accuracy. Fix some 0 ≤ k ≤
n− 2. To compute the ratio mn−k/mn−k−1 we do the following: Let V, V ′ be the parts of

G. Build a new graph Gk by adding k new vertices to each of V, V ′ and draw all edges

between the new vertices and the old vertices in opposite part. Formally, Gk has vertex

set V ∪ {u1, . . . , uk} ∪ V ′ ∪ {u′1, . . . , u′k} and edge set E(G) ∪ {uiv′ : 1 ≤ i ≤ k, v′ ∈
V ′} ∪ {u′iv : 1 ≤ i ≤ k, v ∈ V } (see Figure 3 for an example with n = 3, k = 1). It is easy

to check that Gk is dense.

If you consider a (n+k)-matching in Gk and remove the new vertices, then you obtain

a (n − k)-matching in G. Moreover, any (n − k)-matching in G corresponds to exactly

7

G

u1 u′1

G1

Figure 3: The graph G1

(k!)2 (n + k)-matchings in Gk. Similarly, if you consider a (n + k − 1)-matching in Gk

and remove the new vertices, then you obtain a (n − k + r)-matching in G, for some

r ∈ {−1, 0,+1}. Hence, any matching M ∈ Mn+k(Gk) ∪Mn+k−1(Gk) is of one of the

following types (see Figure 4 for an example with n = 3, k = 1):

1. M ∈Mn+k(Gk) and M corresponds to a (n−k)-matching inG: there aremn−k(G)k!2

matchings of this type .

2. M ∈ Mn+k−1(Gk) and M corresponds to a (n − k − 1)-matching in G: there are

mn−k−1(G)k!2(k + 1)2 matchings of this type.

3. M ∈ Mn+k−1(Gk) and M corresponds to a (n − k)-matching in G: there are

mn−k(G)(2k)k!2 matchings of this type.

4. M ∈ Mn+k−1(Gk) and M corresponds to a (n − k + 1)-matching in G: there are

mn−k+1(G)k!2 matchings of this type.

Let us denote by T1, . . . , T4 the set of matchings of type 1, . . . , 4, repectively. Hence,

if M is picked uniformly from Mn+k(Gk) ∪Mn+k−1(Gk), then

Pr[M ∈ T1 ∪ T3] =
(2k + 1)mn−k(G)

(k + 1)2mn−k−1(G) + (2k + 1)mn−k(G) +mn−k+1(G)
.

Let us denote the denominator of this fraction by N . By Lemma 4.2 (and a little calcula-

tion) we find Pr[M ∈ T1∪T3] ≥ 1/3n3. Similarly, Pr[M ∈ T2] = (k+1)2mn−k−1(G)/N ≥
1/3n3. Recall that Gk is dense so we can sample near-uniformly from the set Mn+k(Gk)∪
Mn+k−1(Gk). By Lemma 4.1, the number of samples needed to approximate (2k +

1)mn−k(G)/N within ratio 1 + ε/4n with probability 1 − 1/8n is (1296n5/ε2) ln(16n) ∈
poly(n, ε−1). Similarly, one can approximate the ratio (k + 1)2mn−k−1(G)/N with the

same parameters in poly(n, ε−1) time. Dividing these estimated values and multiplying

8

u1 u′1

G1 G

u1 u′1

G1 G

Type 1 Type 2

u1 u′1

G1 G

u1 u′1

G1 G

Type 3 Type 4

Figure 4: The four types of matchings of M4(G1) ∪M3(G1)

9

6/8

5/8

5/8

5/8

5/8

6/8

1/8

1/8

1/8

1/81/8

1/8

1/8

1/8

Figure 5: The Markov chain associated with G = K2,2

by (k+1)2/(2k+1) gives with probability (1−1/8n)2 an approximation for mn−k/mn−k−1

within ratio (1 + ε/4n)2. Note that each sampling is done in time poly(n, log ε−1), so the

proof is complete. �

4.2 Sampling via a Markov chain

Definition 4. For a graph G, the Markov chain MC = MC(G) has Mn(G) ∪Mn−1(G)

as its state space, and the transitions are defined as follows: Suppose that we are in state

M. Then, with probability 1/2 we remain at M (this is just to ensure aperiodicity). With

probability 1/2 we choose an edge e = uv of G, uniformly at random, and then:

• If M ∈Mn and e ∈M, move to M′ = M− e.

• If M ∈Mn−1 and u, v are unmatched in M, move to M′ = M + e.

• If M ∈Mn−1, u is matched to w and v is unmatched, move to M′ = M + e− uw.

• Otherwise, remain at M.

We denote by p(M,M′) the probability of transition from M to M′.

In Figure 5, the Markov chain MC(K2,2) is illustrated.

10

Remark 3. The Markov chainMC is ergodic and its stationary distribution is uniform.

Proof. The self-loops guarantee that the chain is aperiodic. Irreducibility is easy to check.

For all M 6= M′, if we can go from M to M′ in a single step then p(M,M′) = p(M′,M) =

1/2|E(G)|, otherwise p(M,M′) = p(M′,M) = 0. Hence the transition probabilites are

symmetric, and the uniform distribution is a stationary distribution. �

Having the above proposition in hand, to near-uniformly sample a matching from

Mn(G) ∪Mn−1(G), one can start from an arbitrary state and simulate MC(G) a large

number of steps, and then output the final state. By the fundamental theorem of Markov

chains (Theorem 2.1) the distribution of final state is close to the stationary distribution,

i.e. it is close to the uniform distribution. This method of sampling is called the Markov

Chain Monte Carlo (MCMC) method. But how fast is the convergence? In other words,

how long should we simulate the Markov chain to be sure that the final distribution is

sufficiently close to the uniform distribution? The lemma that comes next answers this

question, but we need a definition first.

Definition 5. Let π denote the stationary distribution of a Markov chain MC. For a

subset A of states of MC, the conductance of A is defined as

Φ(A) =

∑
ij∈δ(A) πip(i, j)∑

i∈A πi
,

where δ(A) = {ij : i ∈ A, j 6∈ A}. Note that this is just the conditional probability that

the stationary distribution escapes from A in a single step, given that it is initially in A.

The conductance of MC, Φ(MC), is defined as the minimum of conductances of subsets

A with 0 <
∑

i∈A πi ≤ 1/2.

Lemma 4.4.[10] Let MC be an ergodic symmetric Markov chain with s states and such

that p(i, i) ≥ 1/2 for all states i, and let ε ∈ (0, 1]. Then the minimum t such that

the distribution at time t is a near-uniform distribution with tolerance ε is at most
2

Φ(MC)2 (ln s+ ln ε−1).

Hence in order to bound the number of steps required to sampling, we only need to

bound the conductance of the Markov chain, which appears to have a strong relation with

the structure of the underlying graph. The following theorem is the main result of [6]:

Theorem 4.1. If G is dense then Φ (MC(G)) ≥ 1/12n6.

Proof.(outline) Let s be the number of states of MC(G) (recall that each state is a

matching of G), and m be the number of edges of G. Since the stationary distribution

is uniform, we have π(M) = 1/s for all states M. Let H be the underlying graph of

11

MC(G). By the way the Markov chain is defined, it is not hard to check that for all

(M,M′) ∈ E(H) we have p(M,M′) = 1/2m. Thus the formula for the conductance can

be simplified as:

Φ (MC(G)) =
1

2m
min

0<|A|≤s/2

|δ(A)|
|A|

.

Therefore, we actually need to prove that the underlying graph H has good edge expan-

sion.

The technique used here is called the canonical paths technique: suppose that we can

introduce, for each pair M,M′ of vertices of H, a simple M,M′-path, which is called

the canonical M,M′-path. If we can prove that every edge is contained in at most 3sn4

canonical paths, then for any A ⊆ S with |A| ≤ s/2, the number of canonical paths that

cross the cut δ(S) is |A|(s− |A|) ≥ |A|s/2. Thus for any such A the number of cut edges

must be at least |A|s/2
3sn4 = |A|/6n4, which gives

Φ(A) ≥ 1

2m

|A|/6n4

|A|
≥ 1/12n6.

I will not go into the details of specifying the canonical paths and proving the low con-

tainment property here. �

We conclude that for any dense G and tolerance ε ∈ (0, 1], there exists a near-uniform

sampler for Mn(G) ∪Mn−1(G) with tolerance ε and running time poly(n, log ε−1). This,

together with Lemma 4.3 prove the main result of this section:

Theorem 4.2. There exists an fpras for counting the number of perfect matchings in a

dense graph.

In their paper [5] Jerrum and Sinclair proved something stronger; they proved that this

algorithm is efficient for all graphs in which the ratio mn−1/mn is polynomially bounded.

This seems to be a very weak requirement. Indeed it is much weaker than the denseness

requirement. Nevertheless, there exist graphs not satisfying it. The graph in Figure 6 is

an example. To see this, note that there is only perfect matching. But if we remove u, v,

the resulting graph has an exponential number of perfect matchings, since there are two

ways to match the vertices in each hexagon. Therefore, there are an exponential number

of matchings of size n− 1. Hence the ratio mn−1/mn is exponentially large.

5 Outline of The Algorithm For General Graphs

In this section I will outline a summary of the algorithm of [7], whose running time is

exp (O(
√
n)). This algorithm uses the algorithm of Section 4 as a subroutine. Let us

introduce an important concept before going into more details.

12

u . . . v

Figure 6: A graph with mn−1/mn exponentially large

Definition 6. We say that G is α-vertex-expander if for any subset A of vertices, which

lies completely in one of the parts and has size at most n/2, the number of vertices that

are adjacent to some vertex of A is at least (1 + α)|A|.

Let us denote by N(A) the set of vertices that are adjacent to some vertex of A. Also

set V, V ′ be the bipartation of G. If G is α-vertex-expander then we can bound the ratio

mn−1/mn using a very similar technique to the one we used in Lemma 4.2:

Lemma 5.1. [7] If G is α-vertex-expander then

mn−1(G)

mn(G)
≤ exp

(
O(log2 n/α)

)
.

Now, if a given G is α-vertex-expander, then the algorithm of Section 4 applied on

G has running time exp
(
O(log2 n/α)

)
(a nice thing about exponential functions is that

poly (exp (O (f(n)))) and exp (O (f(n))) are not different). And if G is not an α-vertex-

expander, then without loss of generality, there exists a set A ⊆ V with |N(A)| < (1 +

α)|A|. Note that in any perfect matching, vertices of A should be matched to some |A|
vertices of N(A). For each subset B of N(A) of size |A|, we count the number of perfect

matchings in the graphs G1 induced by A ∪ B and G2 induced by (V − A) ∪ (V ′ − B),

multiply these two quantities, and then add up these numbers for all such subsets B. The

bound for running time of the algorithm uses the fact that the number of such B’s is

bounded (is at most
(

(1+α)n/2
n/2

)
). There are two difficult steps in the algorithm, which I

describe next.

First, how to detect whether G is α-vertex-expander, or find a set A with few neighbors

if it is not? The idea is to use tight sets. A set T ⊆ V or T ⊆ V ′ is called tight if

|N(T)| = |T |. The collection of tight sets is closed under union and intersection; in

particular, for each v ∈ V ∪ V ′ there exists a unique smallest tight set containing v,

denoted by ∆(v). It is not hard to check that the sets ∆(v) are easy to compute in

polynomial time (using augmenting paths). Using the idea of tight sets, (and merging

them in certain occasions) one can present a procedure that either decides correctly that G

is α-vertex-expander or produces a set A ⊆ V or A ⊆ V ′ such that |N(A)| < (1 + 2α)|A|,
and runs in time exp (O(αn log n)) (see Lemma 4 of [7] for details). Notice that the set

13

A does not necessarily satisfy |N(A)| < (1 + α)|A|, but the bound 1 + 2α suffices for our

needs.

Second, how to run the algorithm of Section 4 on the generated subproblems with a

correct parameter ε and how to select an appropriate α to obtain a tight approximation

with high probability? These details are described in Theorem 5 of [7], where after setting

the parameters very carefully and after two pages of calculation, in is shown that the al-

gorithm is both fast and accurate. The total running time is O(n3/ε2) exp(O(
√
n log2 n)),

which, ignoring the ε and polynomial factors, is exp(O(
√
n)).

6 Application: Approximating the Permanent

Definition 7. The permanent of an n× n matrix A = [ai,j] is defined as

per(A) =
∑
σ

n∏
i=1

ai,σ(i),

where the sum is over all permutations σ of {1, 2, . . . , n}.

If A is a 0,1-matrix, then one can build a graph GA such that the number of perfect

matchings of GA is equal to the permanent of A. The graph GA has vertex set V (GA) =

{u1, . . . , un, u
′
1, . . . , u

′
n} and edge set E(GA) = {uiu′j : ai,j = 1}. In order to see this, note

that the product
∏n

i=1 ai,σ(i) is 1 if and only if the set {{u1, u
′
σ(1)}, {u2, u

′
σ(2)}, . . . , {un, u′σ(n)}}

is a perfect matching of GA, and is 0 otherwise. Therefore, the algorithm of Section 4 gives

an fpras for evaluating the permanent of a 0,1-matrix in which the sum of every row and

column is at least n/2. Moreover, the algorithm of Section 5 gives a (1+ε)-approximation

algorithm with running time exp (O(
√
n)) for evaluating the permanent of a 0,1-matrix

with high probability.

In 2001, Jerrum et al. gave an fpras for counting the number of perfect matchings

in all graphs [6]. This immediately gives an fpras for calculating the permanent of any

0,1-matrix. Moreover, in the same paper, they showed how their algorithm can be turned

into an fpras for evaluating the permanent of a matrix with arbitrary nonnegative entries.

They further proved that no fpras exists for estimating the permanent of a general matrix,

unless P = NP .

References

[1] I. Bezáková, D. Štefankovič, V. V. Vazirani and E. Vigoda, Accelerating simu-

lated annealing for the permanent and combinatorial counting problems, SODA’06:

Proc. 17th ACM-SIAM Sympos. on Discrete Algorithms (2006), 900–907.

14

[2] A. Z. Broder, How hard is it to marry at random? (On the approximation of the

permanent), STOC’86: Proc. 18th ACM Sympos. on Theory of Computing (1986),

50–58; Erratum, STOC’88: Proc. 20th ACM Sympos. on Theory of Computing

(1988), 551.

[3] M. Huber, Exact sampling from perfect matchings of dense regular bipartite graphs,

Algorithmica 44 (2006), 183–193.

[4] M. Huber and J. Law, Fast approximation of the permanent for very dense graphs,

SODA’08: Proc. 19th ACM-SIAM Sympos. on Discrete Algorithms (2008), 681–689.

[5] M. Jerrum and A. Sinclair, Approximating the permanent, SIAM J. Comput. 18

(1989), 1149–1178.

[6] M. Jerrum, A. Sinclair and E. Vigoda, A polynomial-time approximation algorithm

for the permanent of a matrix with non-negative entries, J. ACM 51 (2001), 671–697.

[7] M. Jerrum and U. Vazirani, A mildly approximation algorithm for the permanent,

Algorithmica 16 (1996), 392–401.

[8] P. W. Kasteleyn, The statistics of dimers on a lattice, I, the number of dimer ar-

rangements on a quadratic lattice, Physica 27 (1961), 1664–1672.

[9] H. J. Ryser, Combinatorial Mathematics, The Carus Mathematical Monographs

No. 14, Mathematical Association of America, 1963.

[10] A. Sinclair, Algorithms For Random Generation and Counting: a Markov Chain

Approach, Birkhäuser, Boston, 1993.

[11] L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci.

8 (1979), 189–201.

15

